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An inactive green complex, isolated at the end of 
the oxidations, and also formed by decomposition of 
2 in solution, is believed to be a O=Ru(OEP) species, 
3, since it reacts quantitatively with PPhs(l:I) to 
give the phosphine oxide and [Ru(OEP)lZ [8]. 
Species 3, which is rapidly converted by trace 
amounts of base into [Ru(OEP)(OH)] *O [7,8] , may 
contain an axial water ligand in which case it would 
resemble O=Ru(bipyridine),(py), which is known to 
oxidize PPhs by an oxygen atom transfer mecha- 
nism [ll]. 

Spectroscopic studies are in progress in attempts 
to characterize more fully the putative 0x0 species 
2 and 3. 
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Nitrosomonas oxidizes NH3 to HNOz with NH?- 
OH as an intermediate. Oxidation of NHzOH appears 

to involve two multiheme cytochromes: hydroxyl- 
amine oxidoreductase (HAO) [l] and cytochrome c 
554 [2]. Hemes of HA0 have midpoint potentials 
varying from +lOO mV to -350 mV [3]. HA0 can 
accept electrons from NH,OH and pass them to cyt 
c 554 (midpoint potential -50 mV, 2). 

HAO, with an a3/3s subunit structure, contains 
7 c-type hemes and one unique heme P460 per 00 
dimer. The CO-binding heme P460 is essential for 
the NH,OH dehydrogenase activity and is specifically 
destroyed by HzO,. EPR studies of HA0 reveal 
several classes of low spin (s = r/2) hemes [4]. Two 
species, accounting for half of the hemes, have been 
assigned g-values by reductive EPR titration; g = 
3.06, 2.14, 1.35 and g = 2.98, 2.24, 1.44 [5]. Only 
four other EPR signals appear in the oxidized spec- 
trum (g = 3.38, 2.70, 1.85 and 1.66). These 
resonances titrate coordinately but are not typical 
of magnetically isolated heme spectra. The apparent 
g-values of these 4 resonances are frequency depen- 
dent suggesting that they arise from spin-interactions 
of the hemes. Frequency dependence of the type 
observed has not been previously reported. The 
Mossbauer spectrum of ferric HA0 contains a 
quadrupole doublet at 4.2 K in addition to the 
expected broad magnetically split spectrum, typical 
of s = % hemes. This doublet, which corresponds to 
at least one and probably two irons per c@dimer, 
has parameters (AE, = 2.1 mm/s and 6r+ = 0.24 
mm/s) which are typical of either low spin ferric 
heme with fast electronic spin relaxation or a pair 
of spin-coupled hemes [6]. We speculate that this 
doublet may be associated with the four frequency 
dependent EPR resonances. Heme P460 is not a com- 
ponent of the latter species since selective destruc- 
tion of P460 by H202 fails to alter the EPR spectrum 
of the oxidized HAO. Thus heme P460 of native 
HA0 is EPR silent. 

C’tochrome ~5.54 at pH 7 has an unusual 10 K 
EPR spectrum (g = 4.18,3.85) similar to intermediate 
spin (s = 3/2) complexes. At pH 4 the EPR spectrum 
consists of one high spin (g = 6.0, 2.0 and one low 
spin (g = 2.93, 2.25, 1.52) component. At pH 2 a 
single high spin component (g = 6.0, 2.0) is present, 
whereas two low spin forms are observed at pH 10.5. 
Optical spectra of oxidized cyt c 554 at 20 “C are 
consistent with high spin heme at pH 4 and low spin 
heme at pH 10.5. Reduced cyt c 554 reacts with O2 
and binds CO at pH 4: the CO spectrum has two 
Soret maxima indicating a different interaction with 
each heme. ‘H-NMR spectra at room temperature 
show contact shifted heme methylene resonances in 
both the low spin (lo-30 ppm) and high spin (60- 
100 ppm) Fe3+ spectral regions at all pH values 
between 4.5 and 9. Contact shifted resonances similar 
to those reported for s = 3/2 model heme complexes 
are not observed at this temperature. We conclude 
that the unusual low temperature EPR spectrum at 
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pH 7 results either from a spin conversion or inter- 
action between high and low spin hemes. EPR, NMR 
and optical spectra show that this is a different type 
of heme-heme interaction than observed with diheme 
cyt c’. 

TABLE I. Product Formationa 

A. As a Function of P-450~CAM Concentration 
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P-450-CAM 
Cont. m 

Exe-5-hydroxy- 
camphor formedC 
(nmol) 

With Putidaredoxin 0 

(3 luM) 0.5 
1.0 
2.0 

Without Putidaredoxin 0 
0.5 
1.0 
2.0 

0.01 + 0.01(2) 
23.6 + 1.0(2) 
49.8 * 1.5(6) 
97.0 f 2.5(2) 

0.02 ? O.Ol(2) 
1.3 f 0.1(2) 
2.7 * 0.2(3) 
5.1 -t 0.2(3) 
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Cytochrome P-450, unlike most other cyto- 
chromes, does not function merely as an electron 
carrier but is also an enzyme capable of catalyzing 
oxygenation reactions. This heme-containing mono- 
oxygenase activates molecular oxygen for insertion 
of one oxygen atom into organic substrates with 
concomitant reduction of the other oxygen atom to 
water. Bacterial P-450, isolated from camphor-grown 
Pseudomonas putida (P-450-CAM)?, utilizes molec- 
ular oxygen and NADH to hydroxyiate camphor at 
the exo-5 position and initiate camphor degradation 
[l] _ Because the hemoprotein itself cannot react 
directly with NADH, electrons are transferred from 
NADH to P-450-CAM via first a FAD-containing 
flavoprotein (putidaredoxin reductase, fp) and then 
an iron-sulfur protein (putidaredoxin. Pd). 

‘Abbreviations: P45OCAM, the camphor hydroxylating 
P-450 isolated from Pseudomonasputida grown on camphor; 
fp, the flavoprotein (putidaredoxin reductase) that accepts 
electrons from NADH; Pd, the iron-sulfur protein (putida- 
redoxin) that accepts electrons from fp and delivers them to 
P-450-CAM; PMS, 5-methylphenazinium methyl sulfate 
(phenazene methosulfate). 

B. As a Function of Time 

Incubation 
(min) 

Exo-5-hydroxy- 
camphor formedC 
(Mol/Mol of P- 
450-CAM) 

With Putidaredoxin 1 

(3 &n 2 
5 

10 
Without Putidaredoxin 1 

2 
5 

10 

28.8(l) 
49.8 * 1.5(6) 

101.7(l) 
188.7 + 5.0(2) 

1.5 t 0.1(2) 
2.7 + 0.2(3) 
5.8 i 0.1(2) 
9.8 f 0.3(2) 

C. Control Experiments 

Exe-5-hydroxycamphor formedC 
(nmol) 

Without Pdd With 5 r&f Pde 

1. No P-450 
2. NoNADH 
3. NoPMS 
4. Boiled P450f 
5. Myoglobin 

(no P-450)’ 

0.02 + 0.01(2) 0.01 f 0.01(2) 
0.01 f 0.01(2) 0.01 t O.Ol(2) 
0.02 * 0.01(3) 0.01 + O.Ol(3) 
0.03 ?0.02(2) - 
None - 

?ncubations were done using optimized conditions unless 
otherwise indicated. Optimized conditions: 1 fl P-450- 
CAM, 600 r.rM d-camphor, 3 mM NADH, and 50 &f PMS, 
in 20 mM phosphate buffer (pH 7.40, and 100 mM KCI), 
2 ml total volume, with gentle oxygen bubbling. In the 
presence of Pd (3-S r&f), 5 mM NADH was used. bTwo 
minute incubations. ‘The number in parentheses is the 
number of trials of a particular experiment. dTen minute 
incubations without oxygen bubbling using optimized condi- 
tions except as follows: 1.6 mM NADH, 250 /.IM PMS. 
‘Same condi$ons as described in footnote d, plus oxygen 
bubbling. P450CAM was boiled for 10 minutes prior to 
use. ‘1 r&f myoglobin. 


